
Modelling Natural Language,
Programs, and their Intersection

Graham Neubig Miltos Allamanis

NAACL 2018

Thanks to Collaborators!

• Graham
• Pencheng Yin, Yusuke Oda, Bowen Deng, Edgar Chen, Hiroyuki Fudaba, Koichi

Akabe
• Bogdan Vasilescu, Hideaki Hata, Sakriani Sakti, Tomoki Toda, Satoshi

Nakamura
• Miltos
• Charles Sutton, Marc Brockschmidt, Alex Gaunt

Who Programs?

• Most don’t want
programming to be
a large part of their
job!

Photo Credits: Joonspoon, Jasper
M, DarkoStojanovic, Notre Dame
Univ

Data ScientistsProgrammers Chemists, Biologists

Animators Psychologists

Coding =
Concept → Implementation

sort list x
in descending

order
x.sort(reverse=True)

The Stack Overflow Cycle
Formulate the Idea sort my_list in descending order

Search the Web
python sort list in descending order

Browse thru. results

Modify the result
sorted(my_list, reverse=True)

Program Understanding =
Implementation → Concept

sort list x
in descending

order
x.sort(reverse=True)

Today’s Agenda:
Can Natural Language Help?
• Introduction (Here!)
• Natural language and programming language (15 minutes)
• Curated data sets (10 minutes)
• Methods for mapping from code to natural language (40 minutes)

• Methods for mapping from language to code (45 minutes)
• Modeling natural language aspects of source code (20 minutes)
• Modeling communicative aspects of software projects (10 minutes)
• Conclusion (5 minutes)

Natural Languages

Programming Languages
vs

Natural Language vs. Code

Note: Summary in Allamanis et al. (2017)

Natural Language Code
Human interpretable Human and machine interpretable
Ambiguous Precise in interpretation
Structured, but flexible Structured w/o flexibility

for (int i = 0; i < 10; i++){
Console.WriteLine(i);

}

ForStatement

Initialization Expression Expression Body

Single Variable

Declaration

Type

int

Name Initializer

Numeric

Literal

i

0

Infix

Expression

Left

Operand

Right

Operand
Operator

< Numeric

Literal

10

i

Syntax

Token

Graph
i=0

i<10

Console.WriteLine(i)i++ END

CodeNatural Language

I shot an elephant in my pajamas.

(image from Daniel 2015)

+ Data Flow, Program Dependency Graph, …

He shot an elephant in my pajamas

He shot an elephant in my pajamas

Executability
• Ambiguity
• Translation

Formality
• Reusability (but [Lopes+17] show a large amount of cloning)
• Explicit vs. implicit long-range dependencies
• “Bit rot”

In Code, What is the Unit?

def func2(t):

my_list = range(1,t)

my_val = 0
for x in my_list:

my_val += x * x
return my_val

def func1(t):

…

class class1:

Single lines of code [Oda+ 2015]

Single variables
[Sridhara+ 2011a, Allamanis+ 2015]

Code blocks
[Sridhara+ 2011b, Wong+ 2013]

Functions/Methods
[Movshovitz-Attias+ 2013], others

Classes
[Moreno+ 2013]

Design Implications for Code Models

• Rich, known, structure
• Can combine formal methods
• Look at code as a mathematical object

• Requires explicit definitions of concepts

General-purpose
Language

Domain-specific
Language

General-purpose Language
vs. Domain-specific Language

Domain-Specific
• Limited, domain-tailored operations
• Reduced expressivity
• Smaller, tractable, search space
• Available in moderate quantity
• Usually functional

General-Purpose
• Broad set of operations
• High expressivity
• Huge search space
• Available in large quantity
• Object oriented, procedural,

or functional

Where does Language Appear
in Programs/Coding?

In the Code Itself

with open(fname) as f:
content = f.readlines()

you may also want to remove whitespace characters like `\n` at the end of each line
content = [x.strip() for x in content]

Comments

VariablesFunctions

• fMRI scans of skilled programmers show that when they reason about
code, they use natural language processing parts of the brain!
[Floyd+17]

In the Documentation

In Question
Answer Forums

Question

Answer
Snippet

Comments

In Developer
Discussions

Data Sources

Data is Essential!

•We are building data-driven models
•Or we are doing data-driven exploratory research
•We need data with natural language and code, and

quality and quantity is essential
•How do we create data, and what language is it in?

Natural Language Commands + Implementations

• The most
straightforward
variety of data,
useful in
automatic code
generation/
commenting
• Excellent survey

by [Lin+ 2018]

Datasets: Domain Specific Languages
• NL interfaces to Databases: e.g.

GeoQuery [e.g. Zelle+96]

• Regular Expressions
[Kushman+13]

• If This Then That [Quirk+15] Intent Autosave your Instagram photos to
Dropbox

Target IF
Instagram.AnyNewPhotoByYou
THEN
Dropbox.AddFileFromURL

https://ifttt.com/applets/1p-autosave-
your-instagram-photos-to-dropbox

https://ifttt.com/applets/1p-autosave-your-instagram-photos-to-dropbox

Datasets: General Language, Specific Domain

• HearthStone (Python),
Magic (Java) [Ling+16]

<name> Divine Favor </name> <cost> 3 </cost> <desc>
Draw cards until you have as many in hand as your
opponent </desc>

Intent (Card Property)

Target (Python class, extracted from HearthBreaker)

• Django (Python)
[Oda+15]

call the function _generator, join the result into a
string, return the result

Intent

Target

Datasets: General Domain
• NL2Bash (Bash) [Lin+18]

• Conala (Python) [Yin+18]

Automatic Mining
[Yin+18, Yao+18]

• Problem: Stack Overflow is
an attractive source of
data, but very noisy

• Solution: Train a classifier
to automatically identify
which data is good
• Hand-crafted features

[Wong+13]
• A neural model that

calculates probability of
code given NL, vice-versa
[Yin+18]

Mining Method

http://conala-corpus.github.io
question_id: 36875258,
intent: "copying one file's contents to another in python",
rewritten_intent: "copy the content of file 'file.txt' to file 'file2.txt’”,
snippet: "shutil.copy('file.txt', 'file2.txt’)”,

intent: "How do I check if all elements in a list are the same?",
rewritten_intent: "check if all elements in list `mylist` are the same",
snippet: "len(set(mylist)) == 1",
question_id: 22240602

http://conala-corpus.github.io/

Other Types of Data: Doc Strings
[Movshovitz-Attias+13, Richardson+17, Miceli Barone+17]

• Gives information about what functions do

• Compared to QA sites, much more abstract, less tied to implementation
• But give hints about how to use APIs if we want!

Other Types of Data: Comments
[Wong+15]

• Inline comments in code can also be informative

• Problem: comments often don’t describe what is being done, but rather
why

Other Types of Data: Diff Messages
[Loyola+17, Jiang+17]
• Version control systems

keep track of changes
and textual descriptions
• Possible source of data

to learn how to describe
changes made to code

Program Understanding:
Mapping from Code to Natural

Language

From Code to Natural Language

Some natural language
description/summary

• Oda et al. "Learning to generate pseudo-code from source code using statistical machine translation” 2015
• Allamanis et al. "A convolutional attention network for extreme summarization of source code" 2016
• Iyer et al. "Summarizing source code using a neural attention model" 2016
• Barone et al. "A parallel corpus of Python functions and documentation strings for automated code documentation and

code generation" 2017
• And many more…

Applications

Explaining Code

Code Search

Accessibility

Documentation

Linking Code to NL Artifacts (Traceability)

Oda et al. “Learning to Generate Pseudo-code from Source Code using Statistical
Machine Translation” ASE 2015

Oda et al. ASE 2015

Oda et al. ASE 2015Oda et al. ASE 2015

Oda et al. ASE 2015

Code Summarization to Natural Language

Iyer et al. “Summarizing Source Code using a Neural Attention Model” 2016

Code
Summarization to
Natural Language

Iyer et al. “Summarizing Source Code using a Neural Attention Model” 2016

Predicting Method Names (≈Summarization)

min Run Length(Subtoken)
Summary

Code

h0 h1 h2

Context-Dependent
Convolutional Attention Features

An RNN to predict summary
subtokens

Allamanis et al. “A Convolutional Attention Network for Extreme Summarization of
Source Code” ICML 2016

Convolutional Neural Attention Models for Code
Summaries

Attention Mechanisms
❯ Weight token embeddings
❯ Direct copy of code token to the summary

Similar to pointer networks [Vinyals et al, 2015]
❯ Choosing between mechanisms

Extracting Attention
Features

Computing Multiple
Attention Weights

meta-attention
mechanism

Attention Visualization Data and Visualizations:
http://groups.inf.ed.ac.uk/cup/codeattention/

Target
Name

set use browser cache

Predictions
● reverse, range (22.2%)
● reverse (13.0%)
● reverse, lo (4.1%)
● reverse, hi (3.2%)
● merge, range (2.0%)

Predictions
● get, UNK (9%)
● get, height (8.7%)
● get, width (6.5%)
● get (5.7%)
● get,size (4.2%)

Predictions
● is, render (27%)
● is,continuous (11%)
● is,requested (8%)
● render,continuous (7%)

Alon et al. “A General Path-Based Representation for Predicting Program Properties” 2018

Alon et al. “code2vec: Learning Distributed Representations of Code” 2018

Jiang et al. 2017, Loyola et al. 2018

Program Generation:
Mapping from Natural Language to

Code

Machine Translation and Code Generation
• Machine translation: natural language to natural language

• Code generation: natural language to programming language

if the store is open tomorrow

�����
�
���	��

if x is divisible by 5

if x % 5 == 0:

Features of Program Generation

• Strong syntax for the target code
•Precise checking of the semantics of the target code
•Weaker connection between command and code
•But much potential for copying words

if x is divisible by 5

if x % 5 == 0:

A Long History in Natural Language Programming

• Early methods: parse natural language specifications, then use
rule-based transformations to derive program [e.g. Balzer+78]
• This, obviously, is hard because natural language is nuanced
• Some even called it “foolish” [Dijkstra79]

• Similarly to machine translation: data driven methods help
resolve this ambiguity and move closer to reality
• Grammar-based models, mostly for DSLs [e.g. Wong+06]
• Neural models [e.g. Ling+16]

A Few Distinctions
• Natural language programming vs. programming by demonstration

if x is divisible by 5

if x % 5 == 0:

x=3 -> false x=15 -> true

if x % 5 == 0:

• Code generation vs. code search

Generate entirely new code Retrieve existing code

• Code generation vs. semantic parsing

NL -> code NL-> a structured meaning representation,
could be code, could be other

A Naïve Neural Attempt
• Run a sequence-to-sequence model and generate code

sort list x backwards

RNN RNN RNN RNN RNN

</s>

RNN RNN RNN RNN

sort (x ,

sort (x , reverse

...

• Works somewhat, e.g. for regexes [Locascio+16]
• For more complex tasks, we need to do e.g. data augmentation to be competitive

[Jia+16]

Taking Advantages of Features of Code

• Copy variables names
• Use the program grammar
• Use the fact that code is executable

Copying Variables
• A simple way to copy variables in neural models: have a “copy”

mechanism that can choose to generate from input sentence [Gu+16]

Character-based Generation + Copying [Ling+16]

Incorporating Grammar: Pre-neural Synchronous
Grammar-based Methods [e.g. Wong+06]

• Idea: we have a grammar that parses input sentence, generates code

• Grammar rules are extracted from alignments and scored
• Advantage: good at modeling compositionality
• Disadvantage: don’t work well when NL/code connections are tenuous

if x is divisible by five

if <X1> -> if <X1>:

<X1> is divisible by <X2>
-> <X1> % <X2> == 0

x -> x

5 -> 5

if x % 5 == 0:

Neural Models w/ Grammar

• Neural models are better at handling indirect relationships
between input and output, can be easily globally optimized
• How do we incorporate grammar?
• As constraints on the output space
• As a way to model information flow in the network

Syntactic Methods
•Key idea: use the grammar of the programming

language (Python) as prior knowledge in a neural model

sorted(my_list, reverse=True)Surface Code

Deterministic transformation (using
Python astor library)

Input Intent sort my_list in descending order

Generated AST

Level-by-level Generation of Tree Structures
[Dong+16]
• Sequence-to-tree model for

generation of tree-
structured outputs
• Pass information from top to

bottom
• No explicit idea of grammar

or explicit constraints

Top-down Generation of CFG Rules [Yin+17]
•Generate AST using CFG rules gathered from parsed corpus
•Factorize the AST into actions:
•ApplyRule: generate an internal node in the AST
•GenToken: generate (part of) a token

Computing Action Probabilities

Generation prob.

Copy prob.

Final probability:
marginalize over the
two paths

Derivation

ApplyRule[r]: apply a production rule to a non-terminal node

GenToken[r]: append a token to the current terminal node
dealing with OOV: make it possible to copy, and also generate with subwords

Using Abstract Syntax Description
Language [Rabinovich+17]

• Every
programming
language has a
specification
• Create a number

of “modules”
that generate
parts of the tree
based on this

Coarse-to-fine Learning
[Dong+18]
• Idea, there is a limited number of “sketches” of programs that people

want to generate.

• First predict the sketch, then predict the variables, etc.

Using Execution Results
• Another advantage of programs: we can execute the program and see

the results!

Type Training Time Test Input Test Output
Programming by
Demonstration /
Inductive Program
Synthesis

Input/Output +
Program

Input/Output Program

Weakly Supervised
Semantic Parsing

Natural Language +
Input(?)/Output

Natural Language Program

Programming by
Demonstration and
Language

Natural Language +
Input/Output +
Program

Natural Language +
Input/Output

Program

Programming by Demonstration/
Inductive Program Synthesis

• This is a whole other tutorial, [Gaunt+16] give a nice overview
• Many methods including:
• Satsifiability modulo theory solvers [Summers+86], sketches [Solar-

Lezama+08]
• Neural methods: encode input/output examples, generate program

[Gaunt+16]
• Harder than learning from NL because of fewer hints, but easier

because it’s verifiable

Miltos Allamanis → M. Allamanis
Graham Neubig → G. Neubig
Big Bird → ???

Semantic Parsing from Question/Answer Pairs
[Clarke+10]

• In a DSL for database queries, try to generate several possible queries,
then update towards the one that is correct

what state has the largest capital
answer(A,largest(A,(state(A),loc(A,B),capital(B)))) Wrong!

answer(A,(state(A),loc(B,A),largest(B,capital(B)))) Correct!

• Motivation: this “weak supervision” often easier to create question/answer
pairs
• Similar methods can be used for code as well, e.g. when generating SQL

queries [e.g. Zhong+17]

what state has the largest capital → arizona
what city hosts Carnegie Mellon University → Pittsburgh

Code Synthesis with Natural Language
Guidance [e.g. Polosukhin+18]

• Problem: Code synthesis methods based on exact search (e.g.
sketching) only work for quite simple problems

• Idea: use standard code synthesis machinery, but additionally use a
natural language query to guide search

When full tree
found, confirm it
passes unit tests!

Miltos Allamanis → M. Allamanis
Graham Neubig → G. Neubig
Big Bird → ???

Abbreviate the first name +

Reconstruction Loss: Supervision w/o
Execution [Yin+18]
• Motivation: we have lots of

unlabeled user inputs to learn from
• Method: after generating code, try

to reconstruct the user input
• This makes sure that information in

the input is preserved in code
• Specifically, use VAE formulation,

which also makes it possible to
design prior over code (e.g. using
large datasets)

join p and cmd into a file path, substitute it for f

f = os.path.join(p, cmd)

join p and cmd into a file path, substitute it for f

Code generator q(z|x)

Reconstructor p(x|z)

Prior p(z)

A Final Alternative: Code Search
[e.g. Zhang+16]
• Assume that we have the code we want somewhere on the web
• Idea: query a search engine (e.g. Bing, Google) with the natural

language, find the top N pages, and return the code snippets

API (Sequence) Search [Gu+2016]

• Many intents can be realized by a sequence of API calls
• Train encoder-decoder that outputs API call sequence over full

language

Modeling Natural Language in Code

Modelling Natural Language Aspects of Code

Variable Names

Type Inference

Program Analysis (via code’s NL aspects)

Variable Naming Task

int int int
int

return

for (int i = 0; i < lim; i++)
if (arr[i] % 2 == 0)

sum += arr[i];

Allamanis et al. 2014, 2015, 2018 Raychev et al. 2015, Vasilescu et al. 2017,
Bavishi et al. 2018, Alon et al. 2018

Predicting Variable Names

Allamanis et al. “Learning Natural Coding Conventions” 2014

int int int
int

return

for (int i = 0; i < lim; i++)
if (arr[i] % 2 == 0)

sum += arr[i];

Encode Usage Context
• Use language model
• Build Discriminative Model

Predicting Variable Names

Raychev et al. “Predicting Program Properties” 2015

Raychev et al. 2015, Xu et al. 2016, …

Type Inference using Natural Language

type: Response

type: string

Modelling NL Aspects of Code
for Program Analysis

Rice et al. “Detecting Argument Selection Defects” 2017

Pradel and Sen “Deep Learning to Find Bugs” 2017

Declaration: string Substring(int startIndex, int offset)

Uses:
• str1.Substring(startIdx, offset)
• str1.Substring(off, start)

Modelling NL Aspects of Code
for Program Analysis

Rice et al. “Detecting Argument Selection Defects” 2017

Pradel and Sen “Deep Learning to Find Bugs” 2017

Modelling NL Aspects of Code
for Program Analysis

Allamanis et al. “Learning to Represent Programs with Graphs” 2018Allamanis et al. “Learning to Represent Programs with Graphs” 2018

Representing Program Structure as a Graph

Representing Program Structure as a Graph

Representing Program Structure as a Graph

Representing Program Structure as a Graph

Representing Program Structure as a Graph

Modelling NL Aspects of Code
for Program Analysis

Allamanis et al. “Learning to Represent Programs with Graphs” 2018

int int int
int

return

for (int i =0; < ; ++)
if ([]>0)

+= [];

Representing Variable Type Information

Representing Nodes

B
A

E G
D

C

F

Graph Neural Networks

B
A

E G
D

C

F

Li et al (2015). Gated Graph Sequence Neural Networks.

B
A

E G
D

C

F

Gilmer et al (2017). Neural Message Passing for Quantum Chemistry.

Graph Neural Networks: Message Propagation

E

D

F

Li et al (2015). Gated graph sequence neural networks.

B
A

E G
D

C

F

Graph Neural Networks: Unrolling

Li et al (2015). Gated graph sequence neural networks.

Graph Neural Networks: Unrolling

Li et al (2015). Gated Graph Sequence Neural Networks.
Gilmer et al (2017). Neural Message Passing for Quantum Chemistry.

• node selection
• node classification
• graph classification

https://github.com/Microsoft/gated-graph-neural-network-samples

Graph Representation for Variable Misuse
B

A

E G
D

C

F

Graph Representation for Variable Misuse
B

A

E G
D

C

F

Modeling Communicative Aspects of
Software Development

Software Ecosystems are a Rich Discussion Ground

Modeling Discussion Topics [Barua+14]
• Research Question: What are developers talking about?
• Methodology: Topic modeling to extract topics, manual inspection

• Results: Discover topics about particular development languages (C++, Python,
web development platforms), but also job advice, how to learn, etc.

Modeling Language Complexity [Kavaler+17]
• Use language models, global and project specific to answer research

questions
• Do people conform to project norms in posting issues?

As people are on the project longer, their entropy drops → Yes
• Does conforming to norms reduce issue resolution time?

Lower language model entropy is associated with faster response times
→ Yes?

Sentiment Analysis for Software [e.g. Lin+18]

• Sentiment analysis has led to many insights in software
engineering:
•More distributed teams have higher sentiment
•Positive sentiment in issue descriptions correlated

with faster fix time
•Negative sentiment correlated with failing of

integration tests
•Challenges in adapting to the SE context

Why Software Language?

• Large, open data of questions/answers, discussions
•Grounded in code
• Task-driven interaction

Conclusion

Conclusion

• Lots of interesting problems!
• Code -> Text
• Text -> Code
• Modeling Natural Language in Code
• Modeling Communication in Software

• Lots of datasets!
• Curated datasets for code->text tasks
• Large uncurated resources for you to be creative with

• Lots of potential!
• There is an increasing technical divide, how can we use technology to close it?

Questions?!

