
1

Generation of Patternswith the OPatGen ProgramUser GuideDavid Anto�sxantos (at) fi.muni.zhttp://www.fi.muni.z/~xantos/patlibThis is a doumentation of the OPatGen (version 1.0) word hyphenationgenerator. OPatGen takes list of hyphenated words and reates patterns to usein TEX. OPatGen is able to handle UTF-8 enoding.This doumentation is part of the OPatGen program. You an use thissoftware under the terms of General Publi Liense. See enlosed General PubliLiense for details. There is no warranty; not even for merhantability or �tnessfor partiular purpose. The entire risk is with you.1 Introdution . 22 What the patterns are . 22.1 The patterns . 22.2 How patterns are generated . 43 OPatGen tutorial . 53.1 First generating . 63.1.1 Running OPatGen . 63.1.2 Adding more levels . 113.2 Parameters, weights, and relatives . 143.3 De�ning our alphabet . 164 Small but useful tools . 184.1 di2traskelet . 184.2 opgwrap and opglog2rep . 195 Invoking OPatGen . 196 Dealing with bugs . 207 Credits . 20

Introdution

2

1 IntrodutionThe OPatGen program takes a list of hyphenated words and reates patternsthat an be loaded into TEX to enable word hyphenation. OPatGen is a om-plete reimplementation of Frank Liang's PatGen program. It brings followingadvantages.� Full Uniode (UTF-8) support, independent on system Uniode support.� Big alphabet handling.� Dynami data strutures, it redues the \apaity exeeded" problem.� \Unlimited" number of hyphenation values.� Easier modi�ations.If none of the highlights above is important for you, you may use the PatGenprogram instead. It is quiker. Reading the guide will not be waste of time as weover the pattern generating topi inside-out and we refer to di�erenes betweenPatGen and OPatGen programs. The di�erenes from user's point of view arequite small. And if you run into diÆulties with PatGen, you may easily swithinto OPatGen paying with longer runtime only.2 What the patterns areIf you are familiar with Appendix H of The TEXbook and you have experiene withgenerating hyphenating patterns and using them in TEX, feel free to skip to thenext setion. This setion desribes what patterns are and how they are used to�nd hyphen points. If you are ompletely new to deal with patterns, I reommendyou not only reading this guide but also to have a look at the Appendix H.2.1 The patternsTEX hyphenates a word �rst looking in the exeption ditionary. If the word isnot there, TEX looks for patterns for that word. Let's use the example from TheTEXbook. Having the word hyphenation, TEX �rst extends it by speial markersmeaning the beginning and end of the word. Let's use a dot for that marker. Sowe get

What the patterns are

3

.hyphenation.The extended word has subwords. h y p h e n a t i o n .of length one,.h hy yp ph he en na at ti io on n.of length two, and so on.Eah subword is a pattern that de�nes integer values related to the desirabilityof hyphens in the positions between its letters. We usually show the values asnumbers between letters, for example 0h0e2n0 means that the values of the hensubword are 0, 0, 2, and 0, where 2 is related to the position between e and nharaters.The interletter values are zero for all subwords exept the ones in TEX's patternditionary. In this ase, only the subwords0h0y3p0h0 0h0e2n0 0h0e0n0a40h0e0n5a0t0 1n0a0 0n2a0t0 1t0i0o0 2i0o0 0o2n0happen to be speial patterns. TEX omputes the maximum interharater valuethat ours at eah subword touhing eah position. The result of all the maxi-mizations is.0h0y3p0h0e2n5a4t2i0o2n0.And the most important part: A hyphen is orret if the hyphen value is odd.Therefore the break-points found are hy-phen-ation.We also all this type of patterns ompeting patterns as the bigger hyphenatingvalue wins over the smaller one. Viewed in other way, the patterns hold the ontextof the hyphen point that is able to deide whether the point is/is not good tobreak the word at. To reate most eÆient patterns we want the ontext to be assmall as possible. Very non-formally we may also say that the patterns we reatemay also reognize the suitable hyphen points not only in word list they weregenerated from but also in any word that is broken in similar way. The patternshold harateristis of the breaking-point ourrene.A similar tehnique may be also used to reate patterns that reognize some-thing else. Quite good results an be obtained when reognizing ompound wordboundaries (this an be diretly done with OPatGen without modi�ations),typesetting long versus short s in fraktur and so on. Other appliations are be-yond sope of this manual.

What the patterns are

4

Now the problem stands how to reate the piees of words with the ugly smallnumbers.2.2 How patterns are generatedWe use an iterative approah to generate the patterns. We need an input data�le|ditionary with hyphen points marked with a speial symbol. We use a dashfor that. The typial list of words in English starts withabil-i-tyab-seneab-strata-a-dem-ia-epta-ept-ablea-ept-edand so on.We go through the ditionary in several levels. In odd levels, we reate overingpatterns, in even levels we reate inhibiting ones. Let us reall that odd hyphen-ating values mean that hyphenating is allowed. We also speak about overing andinhibiting levels.We hoose pattern andidates at eah level. The andidate hoosing rule issimple: we take subwords of given length range. For example in the �rst level wemay take andidates of lengths 2 and 3, in the seond level andidates of lengths3 to 5.The level onsists of several passes. The pass is the basi unit of the generatingproess. During the pass the input ditionary is passed just one. The passmeans piking andidates of ertain length and hyphen position. The passes inthe level are ordered from shorter lengths to longer ones and for eah length forhyphen positions in \organ-pipe fashion," it means from the middle, then theposition left to the middle, right to the middle, and so on to the edges of theword. The andidate is a subword that works well and/or badly on the word.For overing levels working well means overing an allowed hyphen point and thebad ounterpart is allowing wrong hyphenation. In inhibiting levels good work isinhibiting an error and bad work is inhibiting a good hyphen already found.We store the number of ases of good and bad behaviour for eah andidateas good_ount and bad_ount. We ignore andidates that are superstrings ofeither good or bad patterns at this level as they simply have no e�et on thehyphenation proess. The shorter andidate holds the same information as itssuperstring. This optimization is alled knoking out.

OPatGen tutorial

5

After the pass is �nished, andidates are seleted. We use three variables toontrol this proess|good_wt, bad_wt, and thresh. The pattern hoosing rulegoes as follows.1. If the andidate satis�esgood wt � good ount < thresholdthen we insert the andidate into patterns marked as bad, it means with oddvalue higher than the urrent level. We need it for subsequent passes, it willbe removed when the level is �nished.2. If the andidate satis�esgood wt � good ount� bad wt � bad ount � thresholdthen the andidate is good, we insert it into the patterns with the urrenthyphenation value (the level number).3. Otherwise, the andidate is thrown away and we set more_to_ome. It meansthat there might still be longer patterns extending the urrent length andhyphen position and we will hek them.After that proess various statistis are printed.At eah level, pattern is onsidered good if it repairs errors made by previouspatterns. The good_wt, bad_wt, and thresh variables are loal for a level. Afterthe level is �nished, the bad patterns that have been added are deleted.When �nishing the work we may have the input ditionary hyphenated by thepatterns olleted so far. If the number of errors is still to high for us, we mayontinue making another level orreting the errors of patterns from the previousruns.Confused? Don't are, breathe deeply and read the step-by-step tutorial, whereall the things you need to know are explained slowly with examples.3 OPatGen tutorialIn this setion we study an example of pattern generating proess and explain itinside out, overing the features of OPatGen generator.Convention: We sometimes highlight di�erenes between PatGen and OPat-Gen in urly braes, saying fPatGen: no Uniode supportg. We hope it makesswithing the program easy.

OPatGen tutorial

6

3.1 First generatingWe need an input data to reate patterns. We often all the input data theditionary. The ditionary is a sequene of words, one word on a line. The wordsmust start at the �rst olumn, everything after the �rst spae on the line is ignored.The allowed hyphen points are marked with dashes.Let's have the following ditionary (those are nearly random words over theEnglish alphabet hosen only to show you the things I want to).ab-d-efghd-ded-id-dede-fghWe have the words in the di �le.3.1.1 Running OPatGenIt is time to run OPatGen. OPatGen takes four parameters, the ditionary �lename, the patterns to read in, the output �le name and the translate �le name.The translate is a topi by itself, so we desribe it separately. As the runs ofOPatGen may be quite time-onsuming, we may read in a set of patterns wereated in previous levels, as we will see later. For the start, only the ditionaryand output �les are important. So we substitute the rest with /dev/null. Runthe program with me if you an, to see the proess alive.opatgen di /dev/null out /dev/nullThe sreen �lls with something like this:This is OPATGEN, version 0.1... shortened ...Translate file does not exist or is empty. Defaults used.left_hyphen_min = 2, right_hyphen_min = 3If we don't say otherwise (using the translate �le), OPatGen knows the Englishalphabet and works in 8-bit ASCII. The translate �le may also set the valuesof left_hyphen_min and right_hyphen_min. The values speify the number ofleft and right haraters of eah word where hyphenation is ignored. The valuesare language dependent and they mean the minimal number of haraters thatan be left at the end of a line before a hyphen and the minimal number ofharaters that an go to the next line after a hyphen. The default values are forPatGen ompatibility, I think it makes no sense to use anything else than 1, 1

OPatGen tutorial

7

when generating hyphenating patterns. We may ignore borders of a word whenusing patterns, and not generating.26 lettersThe number of letters is the number of symbols in the alphabet. Eah letter mayhave several representations in the input data, as we'll see later.hyph_start, hyph_finish: 1 10 patterns read inpat_start, pat_finish: 1 2good weight, bad weight, threshold: 1 1 1Here we set the values. The hyph_start and hyph_finish mean the range oflevels we want to make. After speifying those values patterns from the pattern�le are read in. We do not have any as we're just starting, so /dev/null was agood hoie as we have nothing to read in. The patterns to read in may ontainonly hyphenating values less than hyph_start.The pat_start and pat_finish ontrol the range of lengths of the patterns.The values 1 and 2 mean we take andidates of length one and two. The lastthree variables ontrol the pattern hoosing proess, the hoosing rules have beendesribed above.Generating level 1Generating a pass with pat_len = 1, pat_dot = 0First the patterns with length one are reated, starting with the hyphen (weoften say dot) position after the zeroth harater of the pattern. It sounds quitestupid, nevertheless it is a good way to refer to positions. It simply means theleftmost position of the word, the andidates we deal with look like 1x, where xis a harater.0 good 0 bad 6 missed0 % 0 % 100 %The numbers denote the numbers of ases when the patterns at well, badly,and/or miss �nding a hyphen point. The very �rst pass always misses everything,of ourse. The perent ounts are related to the sum of good and missed, thereforethe sum of the line does not have to give 100.Count data struture statistis:nodes: 28patterns: 5

OPatGen tutorial

8

trie_max: 28urrent q_max_thresh: 3The statistis of the internal strutures, the most interesting thing is the ount ofthe patterns, the rest of values needs to know quite a lot about the internal workof the generator.Colleting andidates3 good and 1 bad patterns added (more to ome)finding 5 good and 1 bad hyphenseffiieny = 1.25Pattern data struture statistis:nodes: 28patterns: 4trie_max: 28urrent q_max_thresh: 5number of different outputs: 3Now the andidates are olleted. Good and bad ones are added and there wereandidates not satisfying the olleting onditions, it means there might still begood patterns longer than urrent ones. This is indiated by the (more to ome)text. Numbers of found good and bad hyphens appear and the eÆieny is printed.The eÆieny is omputed as follows. Let good_ount be the number ofgood ases of ating of patterns, bad_ount the number of erroneous ases, andgood_pat_ount the number of good patterns. Then the eÆieny is alulatedas bad eff = threshgood wteffiieny = good ountgood pat ount+ bad ountbad effLet's ome bak to the generating proess.Generating a pass with pat_len = 1, pat_dot = 15 good 1 bad 1 missed83 % 16 % 16 %Count data struture statistis:nodes: 28

OPatGen tutorial

9

patterns: 3trie_max: 28urrent q_max_thresh: 3Colleting andidates0 good and 2 bad patterns added (more to ome)finding 5 good and 1 bad hyphensPattern data struture statistis:nodes: 28patterns: 4trie_max: 28urrent q_max_thresh: 5number of different outputs: 4Now we generate a pass looking for patterns x1. It turns out there is nothing goodhere we an add.Generating a pass with pat_len = 2, pat_dot = 15 good 1 bad 1 missed83 % 16 % 16 %Count data struture statistis:nodes: 29patterns: 1trie_max: 29urrent q_max_thresh: 3Colleting andidates0 good and 0 bad patterns added (more to ome)finding 5 good and 1 bad hyphensPattern data struture statistis:nodes: 28patterns: 4trie_max: 28urrent q_max_thresh: 5number of different outputs: 4Candidates x1y are examined.Generating a pass with pat_len = 2, pat_dot = 05 good 1 bad 1 missed83 % 16 % 16 %Count data struture statistis:nodes: 29patterns: 1

OPatGen tutorial

10

trie_max: 29urrent q_max_thresh: 3Colleting andidates0 good and 0 bad patterns added (more to ome)finding 5 good and 1 bad hyphensPattern data struture statistis:nodes: 28patterns: 4trie_max: 28urrent q_max_thresh: 5number of different outputs: 4Generating a pass with pat_len = 2, pat_dot = 25 good 1 bad 1 missed83 % 16 % 16 %Count data struture statistis:nodes: 29patterns: 1trie_max: 29urrent q_max_thresh: 3Colleting andidates0 good and 0 bad patterns added (more to ome)finding 5 good and 1 bad hyphensPattern data struture statistis:nodes: 28patterns: 4trie_max: 28urrent q_max_thresh: 5number of different outputs: 4And �nally the andidates 1xy and xy1 are tested. Note that none of them addedanything useful. Have a detailed look at the output and hek arefully whathappens.1 bad patterns deletedtotal of 3 patterns at level 1During the �rst level one bad andidate has been added. It is deleted now, whenthe level ends.hyphenate word list <y/n>? yWriting file pattmp.1

OPatGen tutorial

11

5 good 1 bad 1 missed83 % 16 % 16 %The �nal question is if we want to see the work of the new-born patterns on theditionary �le. We want to. So the words of the ditionary are hyphenated withpatterns we have and the result is written into pattmp.n �le, where n is the lastlevel number. The patterns we have are written into the output �le. The patternsat �ve times well, make one error, and an't �nd one of good hyphen points. Theperent ounts are again related to the sum of good and missed hyphens.Let's now have a look at the results. The patterns we reated are11e1iand the hyphenated ditionary in the pattmp.1 goesab*d*efghd*ded.*id*dede-fghThe hyphens we �nd are marked with `*', the bad ones (we �nd and they arewrong) with `.', and the ones we miss with `-'.Please have a look at the patterns and the output and try to hyphenate thewords using the patterns yourself.3.1.2 Adding more levelsThe patterns are not as good as they might be. They make an error. Let us addthe seond level, the inhibiting one. The even levels orret errors, the odd onesadd hyphenating points. First we opy the out �le into the pat, so as not to haveto generate the �rst level again. Now we start OPatGen with the pattern �lename pat.opatgen di pat out /dev/nullNow theOPatGen's output will be muh more shortened, as I do not like manualsover 500 pages. Let's set the values, we want to generate the seond level, andwe want to deal with andidates of lengths two and three. Now we slightly prefergood patterns over bad ones, therefore we set the weights to 1, 2, and 1.

OPatGen tutorial

12

... shortened ...hyph_start, hyph_finish: 2 23 patterns read inpat_start, pat_finish: 2 3good weight, bad weight, threshold: 1 2 1Here we go. We start with patterns of length two and ontinue with length three,the dot positions are ordered in \organ pipe" fashion for eah length.Generating level 2Generating a pass with pat_len = 2, pat_dot = 15 good 1 bad 1 missed83 % 16 % 16 %...Colleting andidates0 good and 3 bad patterns added (more to ome)finding 5 good and 1 bad hyphens...Generating a pass with pat_len = 2, pat_dot = 05 good 1 bad 1 missed83 % 16 % 16 %...Colleting andidates1 good and 3 bad patterns addedfinding 6 good and 1 bad hyphens...Generating a pass with pat_len = 2, pat_dot = 25 good 0 bad 1 missed83 % 0 % 16 %...0 good and 4 bad patterns addedfinding 5 good and 0 bad hyphens...Wow, where is the length three we wanted? The length is silently skipped as therewas no more to ome, in human words, we know there an't be longer patternsextending the ones we reated. So we do not waste time to hek them again.

OPatGen tutorial

13

We have taken some bad patterns, we delete them now. We added just onepattern to our set. And we want the word list to be hyphenated.7 bad patterns deletedtotal of 1 patterns at level 2hyphenate word list <y/n>? yWriting file pattmp.25 good 0 bad 1 missed83 % 0 % 16 %Now the patterns and the hyphenated list are:12i1e1iab*d*efghd*ded*id*dede-fghWhat an improvement! We redued the number of errors from one to zero! Nowwe only miss one hyphen. We may orret it adding one more level, the third,overing one.We again opy urrent outputs to the pattern �le and repeat allingOPatGenwith the patterns to read in. Now we set the hyphenation level to 3, the lengthrange from 3 to 3 (do you see it's enough?), and the parameters to 1, 10, and 1.This is how we say that we want patterns that do not have to over many points,nevertheless if they make an error, they are heavily penalized for that....hyph_start, hyph_finish: 3 34 patterns read inpat_start, pat_finish: 3 3good weight, bad weight, threshold: 1 10 1Generating level 3......

OPatGen tutorial

14

total of 1 patterns at level 3hyphenate word list <y/n>? yWriting file pattmp.36 good 0 bad 0 missed100 % 0 % 0 %Hooray! Complete suess! We over all the hyphen points and make no errors atall, let's have a look at the patterns..de312i1e1iWhat is the dot now? The dot in the pattern �le is a speial harater meaningthe edge of a word. Suh a pattern mathes only the words starting with de. Thedot may also appear at the very end of a pattern.Final notes: If you have a real ditionary with thousands of words, do notexpet the overing of hyphen points to be omplete. There will be errors thatan be orreted adding more levels or using the exeption ditionary. And notethat you may generate several levels at a time giving the level range to the �rstOPatGen's question.Now try generating patterns with di�erent lengths than I did and with di�erentparameters and hek the results arefully.We sometimes need a word list to be hyphenated without pattern generationitself, for example if we want to test the patterns on another word list that theywere reated. So OPatGen allows a speial setting of the level range to ahievethe e�et. If the hyph_finish is smaller than hyph_start, the patterns are readin, there is nothing to generate, and OPatGen asks whether to hyphenate theword list.3.2 Parameters, weights, and relativesThe important question we have not disussed in the previous overview is howto set the generating parameters good_wt, bad_wt, and threshold. There is nosimple answer to that. More preisely, the simple answer is \nobody knows."Setting the parameters is the most interesting part of the generating proess, itis heavily input data dependent. The problem is more than twenty years old andthere is no theoretial framework for that.Generating of patterns needs some experiene and intuition. Now I put onlyseveral remarks what you an expet in general. We write the good_wt, bad_wt,

OPatGen tutorial

15

and threshold values as three numbers to be short, so (1, 10, 4) means good_wtto be 1, bad_wt 10, and threshold 4.Let us start with bad_wt. If that value is low (related to the threshold), youallow patterns to make errors. This may be good in �rst level if you want to overas muh as possible. In higher levels, the setting like (1, very high number like1000 or so, 1) an be often found, making the patterns to be highly penalized foran error. The good_wt is often set to a small number like 1, 2, or 3. For example,setting (1, 2, 20) may be quite nie for �rst levels, as it takes patterns that aregood 20 times with no error, or 22 times with one error and so on. This may besuitable for short patterns, for longer patterns it would miss quite good and error-less patterns if they appear less than 20 times. Another often seen settings are(1, 5, 1), penalizing errors, or (1, 4, 7), preferring patterns overing more points.Another problem is how to hange the pattern length range. For our applia-tion patterns an be quite short, 1 to 7 haraters for languages like English, a bitmore for German, as an example of a language with longer words. Usual settingis 1{3 for �rst and seond level, slowly inreasing to 4{6 for the �fth level. Somepattern reators don't like patterns of length 1 and start from 2. In general, theshorter the patterns are, the quiker their usage is.There is no golden rule. Read some artiles summing up the experienes withgenerating patterns for various languages, there an be found elsewhere.One small ompliation an make adjusting the parameters a bit more diÆult.The words in our ditionary an be weighted. If there is a number at any interletterposition in the input data, the position is ounted as many times as the numbersays. It brings the possibility to weight some words in our ditionary more heavilyto make their hyphenation more important. For examplehy-2phen-a3-ti7onmeans that the position between y and p will be ounted as it appeared twie andthe position between a and t as it appeared three times. The position betweeni and o is ounted seven times. Also note it makes no di�erene if we put thenumber before or after the hyphenation mark.The weight may be a natural number, not only a digit. fPATGEN: only one-digit weights are allowed.gThere is a useful exeption. If the number appears in the very beginning ofthe word it means the global word weight that is valid until it is hanged. Aftera global weight we represent all positions of all following words as having thatweight unless the position itself sets something else. Have a look at the example.Also note the using of global weight 1 to turn bak to the defaults.ab-2d3qw-ertyu4i-op1ef-gh

OPatGen tutorial

16

will be represented as (we don't put down the default weight 1)ab-2dq3w3-e3r3t3yu4i3-o3pef-ghThis feature may be useful if you want to prefer orret work of your patterns ona subset of the ditionary over the rest, for example aording to the frequeny ofwords in the language.When hyphenating a word list the weights are opied into the pattmp.n �le.They are opied in the \minimal" form, the form of the ditionary �le doesn'thave to be preserved.3.3 De�ning our alphabetWe an generate patterns now. But we used only English alphabet for that, thereare many languages using aents and more than the twenty-six symbols. Wemay use two approahes to handle that problem, the �rst one is to use the esapesequenes, the other is Uniode. We may also ombine the two things together.Using Uniode obsoletes having esape sequenes to represent letters in TEX,nevertheless we provide this feature for PatGen ompatibility, even though itompliates the program onsiderably.What we need to now is a translate �le. The translate �le ontrols the al-phabet we use. The �rst line of the translate �le is speial. It sets the values ofleft_hyphen_min and right_hyphen_min variables in the �rst two and seondtwo olumns. If those values are invalid, OPATGEN will ask for them interative-ly. The remaining three olumns of the line, namely the �fth to the seventh, mayde�ne replaements for the ., -, and * haraters to be used in the word list. Thereplaement haraters may be 7-bit ASCII values. The rest of the line is ignored.The replaements might be useful if you want to use some of that haraters todenote an aent.The rest of the �le de�nes the letters of the alphabet of the language. Notethat if the translate �le is empty, the defaults are used. If the translate �le is notempty, you must put all the alphabet you use into it, inluding the default a to zsymbols (if they appear in your input data, of ourse). We need it to store thewords eÆiently.Eah line ontains a delimiter in the �rst olumn, this is a harater not o-urring in any representation of the letter on the line. The delimiter is any 7-bitASCII value. The delimiter is followed by any number of representations of theletter. The representations are separated by the delimiter. The very �rst repre-sentation of the letter in the line is alled primary or lowerase, the other ones

OPatGen tutorial

17

are seondary or upperase. The names ome from the fat that TEX hyphen-ates words temporarily onverted to their lowerase forms. Any of that formsmay be used in input �les, but for OPatGen all of them have one internal ode.When OPatGen is writing the letter into a �le, it uses the lowerase form only.fPATGEN: There must be double delimiter to �nish the last esape sequene inthe end of the line.gAnything after double delimiter is a omment, either at the very beginning ofthe line or anywhere else. Empty lines are ignored.What the representation of the letter may be depends of OPatGen's mode.If the mode is ASCII (the default we used in our examples), the letter maybe an 8-bit ASCII value or esape sequene reated out of 8-bit ASCII values.The Uniode mode is spei�ed by the -u8 swith as the �rst parameter of theommand line. In the Uniode mode the letter representations may be 7-bitASCII values, UTF-8 multibyte haraters, and esape sequenes made out of7-bit ASCII values. We highly reommend using only 7-bit ASCII haraters inthe esape sequenes in any ase.The esape sequene starts with an esape harater. If a harater is usedas esape it may not be used as an ordinary harater. The rest is a sequene ofletters and haraters that are used nowhere else (invalid haraters). You maynot use digits, esapes, or hyphen haraters in the esape sequenes. Let us havean example of esape sequenes. a A \myade�nes \mya as equivalent to a and A. The \ harater is an esape harater.Having that line in our translate, de�ning abb esape sequene is invalid as thea harater is a letter. We may de�ne a |bb sequene. The | harater has notbeen used before.If the esape sequene ours in the input �le, it must be followed by a number,a hyphenation harater, an esape sequene, end of line, or at least one spae. Wemust be able to reognize its end. fPatGen: no spaes, the esape sequene mustnot be pre�x of another one.g The spaes after the esape sequene are ompletelyignored, whih is similar to TEX's reading input routine. The esape sequene isreognized only if it starts with the same esape harater as it was de�ned in thetranslate �le. For example, having \ and | esape haraters, then |mya won't bereognized as representation of a! Moreover you may de�ne \mya and |mya to betwo di�erent esape sequenes. This di�ers from TEX and I hope I don't have tosay I strongly vote against doing this.Let us have an example of a translate �le. 1 1** I am a omment. a A \mya \myA

Small but useful tools

18

 b B I am a omment after two spaes.#p#P#\varphiThe �rst line sets the left and right minimal hyphenation values to ones. Thethird line de�nes the letter a. This letter may be written in input data as A,\mya, or \myA. The fourth line de�nes an ordinary b letter. The last line of ourexample is analogial to the seond one, we only demonstrate the usage of non-spae delimiter. Note that the \varphi is not followed by spae, otherwise itwould not be reognized in a word like \varphi-a! It's a good idea to �nish theline with double delimiter to prevent trailing spaes to make hard-to-�nd errors.We also reommend using a visible delimiter. The author one spent several hoursdebugging the program to �nally �nd out he had double spae in his translate.The syntax is eÆient but it lets you easily shoot in your leg.fPatGen: esape sequenes were usually followed by the spae harater inthe translate �le to make the syntax of input �les loser to TEX's one. It madelots of problems that lead to Bad representation errors without identifying theline. I onsider it quite ugly. The translate �le handling in PatGen was addedlater to make it able to handle features of \8-bit TEX" and is full of beautifulprogramming triks. I onsider it to be the least readable part of PatGen.gThe input data may now ontain for example words like a\varphi-\myA b andaP-\mya b, they are both equivalent to ap-ab. The sequene a\myAP is invalid asthere is no way to reognize the end of the esape sequene. But a\myA\varphiis orret, so is a\mya-\myA2b.OPatGen deides whether the �les are in Uniode or ASCII only aordingto the -u8 swith. No loale or other system setting is taken into aount to beable to handleUniode on systems that don't support it. As forgetting the -u8 isa ommon mistake (at least I forget this very often), the error message (that seemsit has nothing to do with this problem at �rst sight) also reminds this possibleproblem. The -u8 swith must be the �rst parameter of the ommand line.OPatGen also tries pretty hard to hek the onsisteny of the translate �le.If an error ours OPatGen informs the user reasonably what happens.The order of lines in the translate �le ontrols the \alphabetial order" ofsymbols in the output. The output �les will be reated in that order exept thepattmp.n. That �le keeps the order of the ditionary.4 Small but useful tools4.1 di2traskeletIn order to reate a list of all haraters ourring in the ditionary �le, youan use a tool named di2traskelet. This program an be found in the tools

Invoking OPatGen

19

diretory. It produes a simple list of haraters that appear in the �le in simple\binary" order. You an use this as a base to reate the translate �le, with norisk of forgetting a harater.The di2traskelet program is alled using two or three parameters, if the�rst is -u8, it swithes into UTF-8 mode. The following two parameters are �lenames of the ditionary �le and of the translate skeleton.4.2 opgwrap and opglog2repThe opgwrap utility is an OPatGen wrapper. It takes the �le names to deal withand the level parameters and alls OPatGen repeatedly. Eah run is logged,therefore you may see exatly what happens. Moreover it always hyphenates theword list. Use opgwrap --help to exat explanation and examples.The wrapper produes logs with names like log.1, log.2, et. It is veryuseful to see the �nal results of the runs, it means the �nal overing information.Therefore we have a small tool named opglog2rep (for OPatGen log to report),it takes the logs, the starting number, and the name of the output �le. Then it�lls the output �le with the �nal results of the logged runs, more preisely withseveral �nal lines of logs. If the word list haven't been hyphenated in ertain run,it just adds some unuseful rubbish.Both the programs are simple Perl sripts, not very intelligent but may beuseful. They were tested on Un*x platforms and the report maker uses the tailtool.5 Invoking OPatGen� opatgen --helpprints usage help and quits� opatgen --versionprints version info and quits� opatgen [-u8℄ DICTIONARY PATTERNS OUTPUT TRANSLATEasks for parameters interatively and generates patterns using ditionary, read-ing patterns before start, writing to output �le and all that as translate on-trols. If -u8 is set, all the �les are in UTF-8 enoding, otherwise 8-bit ASCII.

Dealing with bugs

20

6 Dealing with bugsIf you �nd a bug in the OPatGen program or its doumentation, please report itto the author and maintainer, xantos (at) fi.muni.z. Desribe the data youhave problem with and the onditions and parameters when the program fails.Also add the version number, preferably the CVS revision ID, information aboutyour platform and ompiler. Volunteers to improve my English are also welome.The software is far from perfet. If you have any questions, suggestions, notes,or just anything you want to tell, feel free to ontat the author. I'd be reallyhappy to hear of you. Your notes will be taken seriously, this di�ers from mostommerial software.7 CreditsI would like to thank to� Petr Sojka, my adviser. He taught me all the basis about pattern generatingand helped me very muh with analysing the program and its implementation.He always wants more than I am able to do; I am sure this permanent tensionmade this program better.� My parents who were walking around silently when I was hewing my pen andhitting the keyboard.� My friends who didn't ask too often how things go.� All the people who develop free software, don't wont me to put down theirnames, it would be loooong.

