
TCA2
Øystein Reigem (current developer)
Johan Poppe (earlier developer)
Knut Hofland (project leader)
Gjert Kristoffersen (project leader)

Aksis, University of Bergen

2005

1

2

Area for aligned
elements

Area for elements
to align, i.e,
elements awaiting
approval or
changes

Box that shows
how well the
elements to align
match

Area for unaligned
elements

3

The application shows elements exactly as they appear in the input file, tags and attributes and all.

The application uses 'corresp' attributes to represent alignments in the output files. Existing 'corresp'
attributes - if any - will be stripped. But even if the app changes the coding, the changes are not shown in the
interface. The 'corresp' attributes we see in this illustration are old ones present in the input files. (The files
used for these illustrations are files that have already been aligned with a different program.)

4

Opening files - texts and anchor word list.

These are the files of the demo system.

Texts.
Must be xml.
Must contain
elements that the
app recognizes.
The elements
must have 'id'
attributes with
unique values

Norwegian }English

English }Norwegian

English/Norwegian
anchor word file

! Open English
text on left side,
Norwegian on
right

5

Bug: Sometimes a text doesn't show after the file have been read in.
Possible remedy: More button followed by Less button.

Application currently set up to handle <head> and <s> elements. Later: Settable from Settings button.

6

Bug: Size (height) of cells doesn't always
fit the content. Cells are sometimes too
large, sometimes too small. Resizing the
window might make matters worse.

Bug: Unequal widths.
Tip: Start app. Open both files.
Then maximise (or increase
width).

Bug: Status from reading in
files doesn't go away.

7

Wildcard '*' can be used anywhere, e.g, *ulykke*

Phrases possible, e.g, red wine,claret/rødvin

List can be edited and saved back to file.

Anchor word list handling is buggy. Open list before alignment starts. Do not attempt to re-open file or do
any changes.

8

Colours are used to show which elements
are aligned

Clicking on an element in one box will scroll the
other box to get alignments in synch visually

9

Use this button to approve the suggested alignment(s)

Press the Suggest button to get the application to suggest a new alignment.
If the Skip 1-1 box is ticked the app will automatically approve its own
suggestions as long as they are 1-1 alignments, and not pause for approval
until some other kind of alignment appears (0-1, 1-0, 1-2, or 2-1).

Note: Not possible to press Suggest
button while there still are pending
alignments. App needs
'Align&Suggest-in-one' feature.

10

Total score, based on

(1) Anchor word match

 (Here are details
 about anchor word
 matches)

(2) Proper names match
(not implemented)

(3) Dice comparison
 (not implemented)

(4) Length match

Scores from (1), (2) and (3)
are added together, and
modified according to (4)

11

Click these buttons to manually change the sets of pending elements.

12

Click elements to change the relations between them. Can be used to establish crossing alignments, like
here. Not really needed for anything else. (Can not be done for already approved alignments.)
When clicking, relations (colours) sometimes change in unexpected ways (but there's a logic behind it).
Sometimes an element must be clicked more than once to achieve the needed relation.

13

The most recent alignment(s) can be undone with the Unalign button.

14

When the app suggests an alignment it first tries out various combinations of elements and alignments.

Each single alignment it tries takes some elements (say n elements) from the first text and combines with
some elements (say m elements) from the second text. Allowable m-n are 0-1, 1-0, 1-1, 1-2, 2-1.

Each such combination gets a score according to several criteria, e.g, the occurrence of matching anchor
words in the two sets of elements. (0-1 and 1-0 combination get a score of 0.)

The various possible combinations are not evaluated in isolation. Instead the app looks further in the texts
and tries out whole paths of combinations.

Example: Here is one such path with combinations 1-1, 1-1, 2-1, 1-1, 1-2.

Elements from one text
E
lemen
ts
from
t
he

o
t
her
tex
t

X
X

X
X

X

(This path has no 0-1 or 1-0 combinations, but they are so tricky to draw.) :-)
15

Each path gets a score which is the sum of the scores of the individual combinations.

The app tries out all such paths of a certain length (a certain number of steps) before deciding on the best
one (the one with the highest score). During the process it prunes sub-optimal paths.

(Combinations 0-1 and 1-0 contribute with 0 to the path score, but paths containing such combinations may
still sometimes get a high enough score from the other steps to win.)

After selecting the best path the app selects the first step of that path as its suggestion for an alignment.
(That alignment might not be the winning one if only the first steps were compared.)

(So there is a lot of work behind arriving at just one single alignment. But the app doesn't throw away all its
temporary results. Much of them will be reused when working on the next suggestion. Btw - garbage
collection hasn't been implemented yet, and some temporary results pile up in memory.)

16

The application has a button and a dialog box for changing various settings. Currently the only setting in the
dialog is the length of paths to try (with a rather low default value of 3). Among other possible settings in the
futere might be the names of elements to handle (currently only <head> and <s>.)

17

