fad_bakgrunn

Bakgrunnsdokument

Prosjektskisse:

For parallelltekst mellom nord-, lule- og sørsamisk og evt. andre språk. I praksis vil det primært gjelde tekstar mellom norsk og dei tre samiske språka.

Arbeidsoppgåver:

To månadsverk + overhead til UiT

  1. Handsame parallelltekstar frå statsadministrasjonen i korpus (programmerar)
  2. Parallellføre tekst på setnings- og ordnivå (datalingvist)
  3. Parallelle setningar og ord som del av datastøtta omsetjing i eit omsetjarverkty (programmerar, datalingvist)

Resultatet av a-c vil bli ein deskriptiv database over departementet sine tekstar, og eit grensesnitt omsetjarane kan bruke for å samanlikne omsetjingane sine med tidlegare omsetjingar.

Det trengst deretter mange månadsverk for å bearbeide materialet vidare til ei forvaltningsordbok:

  1. Leksikografisk arbeid med parallellistene (filolog * 3 språk)
  2. Utvide det terminologiske grunnlaget til fleire språk

Eit grovt overslag kunne vere ca 6 månadsverk pr språk.

Project plan

  1. Collect files, for each smX with parallel texts in nob (nno, eng, swe, smX?) (Børre)
    1. sme: XXX words
      1. Governmental whitepapers
      2. Governmental web page documents, freecorpus/converted/sme/admin/depts/regjeringen.no/
      3. Saami parliament files: freecorpus/converted/sme/admin/sd/
    2. smj: YYY words
      1. Governmental pdf files, freecorpus/converted/smj/admin/depts/
      2. Governmental web page documents, freecorpus/converted/smj/admin/depts/regjeringen.no/
    3. sma: ZZZs words
      1. Governmental pdf files, freecorpus/converted/smj/admin/depts/
      2. Governmental web page documents, freecorpus/converted/sma/admin/depts/regjeringen.no/
  2. Sentence align (Ciprian, Børre?)
  3. Word align (Francis)
    1. Make parallel wordlists
    2. Check for relevant vocabulary (nob frequency deviant from normal, i.e. nob words with higher frequency in the material than in a big reference corpus. What we would expect is (freq in big ref corpus / wordcount of ref corpus) x wordcount of material
  4. Manual lexicographic work (Lexicographers)
    1. Go through the word pair lists and evaluate them
    2. The goal here is not a normative evaluation, but a descriptive:
      1. Remove erroneous alignments and keep good ones
    3. A normative term collection (these are the term pairs we want) is outside the scope of this phase of the project.
  5. Integrate the resulting list into Autshumato (Ciprian, etc.)

Gamle månadsrapportar

March

nob-sme files are in the folder $BIGGIES/gt/sme/corp/forvaltningsordbok/.

February

December

  1. Collect files, for each smX with parallel texts in nob (nno, eng, swe, smX?) (Børre)
    1. sme:
      1. Governmental whitepapers - 16 documents, 948384 words (in the pdfs mentioned in the above doc)
      2. Governmental web page documents, freecorpus/converted/sme/admin/depts/regjeringen.no/ - 1384 documents, 615852 words
      3. Saami parliament files: freecorpus/converted/sme/admin/sd/ - 929 documents, 220377 words
    2. smj: YYY words
      1. Governmental pdf files, freecorpus/converted/smj/admin/depts/
      2. XXX documents, YYY words
      3. Governmental web page documents, freecorpus/converted/smj/admin/depts/regjeringen.no/
      4. XXX documents, YYY words
    3. sma: ZZZs words
      1. Governmental pdf files, freecorpus/converted/smj/admin/depts/
      2. XXX documents, YYY words
      3. Governmental web page documents, freecorpus/converted/sma/admin/depts/regjeringen.no/
      4. XXX documents, YYY words
  2. Sentence align (Ciprian, Børre?)
  3. Word align (Francis)
    1. Make parallel wordlists
    2. Check for relevant vocabulary (nob frequency deviant from normal, i.e. nob words with higher frequency in the material than in a big reference corpus. What we would expect is (freq in big ref corpus / wordcount of ref corpus) x wordcount of material
  4. Manual lexicographic work (Lexicographers)
    1. Go through the word pair lists and evaluate them
    2. The goal here is not a normative evaluation, but a descriptive:
      1. Remove erroneous alignments and keep good ones
    3. A normative term collection (these are the term pairs we want) is outside the scope of this phase of the project.
  5. Integrate the resulting list into Autshumato (Ciprian, etc.)

Original deadlines

  1. Collect files
    1. nob-sme: december
    2. nob-smj: january
    3. nob-sma: january
  2. Sentence align
    1. nob-sme: january
    2. nob-smj: january
    3. nob-sma: january
  3. Word align
    1. nob-sme: january
    2. nob-smj: january
    3. nob-sma: january
  4. Term extraction
    1. nob-sme: january
    2. nob-smj: january
    3. nob-sma: january
  5. Term evaluation
    1. nob-sme: febrary
    2. nob-smj: febrary
    3. nob-sma: febrary
  6. Autshumato integration
    1. nob-sme: febrary
    2. nob-smj: febrary
    3. nob-sma: febrary
  7. Evaluation, report
    1. nob-sme: march
    2. nob-smj: march
    3. nob-sma: march
  8. March, 31st: Final report due.

Obsolete docu?

How to convert files to xml

Inside $GTFREE:
find orig -type f | grep -v .svn | grep -v .xsl | grep -v .DS_Store | xargs convert2xml2.pl

The output is thanks, «you gave me $numArgs files to process» and then . or | for
each file that is processed. . means success, | means failure to convert a file.

For a lot more verbose output to the terminal, use the --debug option

After the conversion, get a summary of the converted files this way:
java -Xmx2048m net.sf.saxon.Transform -it main $GTHOME/gt/script/corpus/ym_corpus_info.xsl inDir=$GTFREE/converted

This results in a file corpus_report/corpus_summary.xml

To find out which and how many files have no content, use this command:
java -Xmx2048m net.sf.saxon.Transform -it main ../corpus/get-empty-docs.xsl inFile=`pwd`/corpus_report/corpus_summary.xml

This results in a file out_emptyFiles/correp_emptyFiles.xml

The second line tells how many empty files there are.